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SUMMARY

A new computational method is developed for numerical solution of the Richards equation for flow in variably
saturated porous media. The new method, referred to as the mixed transform finite element method, employs the
mixed formulation of the Richards equation but expressed in terms of a partitioned transform. An iterative finite
element algorithm is derived using a Newton–Galerkin weak statement. Specific advantages of the new method
are demonstrated with applications to a set of one-dimensional test problems. Comparisons with the modified
Picard method show that the new method produces more robust solutions for a broad range of soil–moisture
regimes, including flow in desiccated soils, in heterogeneous media and in layered soils with formation of
perched water zones. In addition, the mixed transform finite element method is shown to converge faster than the
modified Picard method in a number of cases and to accurately represent pressure head and moisture content
profiles with very steep fronts.
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1. INTRODUCTION

The physics of isothermal flow in variably saturated porous media is largely captured in the
mathematical model referred to as the Richards equation.1 The descriptive capability of this model
has popularized it as the ‘knowledge engine’ for many one-dimensional (1D) computer models,2,3 as
well as for sophisticated three-dimensional computer codes describing flow in highly heterogeneous
porous media.4,5 The generation of physical insights through high-resolution numerical simulations,
however, has been limited because of the difficulty in obtaining rapidly convergent and accurate
numerical solutions for realistic problems. This is particularly the circumstance for simulation
problems involving wetting fronts moving into a desiccated soil, unsaturated flow in layered soils
with sharp contrasts in hydraulic properties, as well as the formation and dissipation of perched water
zones.
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Two primary sources of numerical difficulty are (i) the strongly non-linear nature of the Richards
equation and (ii) its unique mathematical character, which can change from parabolic, to hyperbolic
or to elliptic behaviour. The standard prescription for accommodating the non-linearity has been to
utilize an iterative method such as Newton–Raphson or Picard algorithm6 in conjunction with finite
difference or finite element approximations.7 The ability of the Richards equation to simultaneously
exhibit behaviour of the three archetypal partial differential equations in the same simulation is
particularly daunting. This mathematical character is a function of the flow regime and soil hydraulic
properties. For earth materials with certain soil–moisture retention properties, capillarity will
dominate moisture transport and, as a result, the governing equation is a non-linear parabolic
equation. In more drainable materials and at relatively high saturation levels, gravity generally
dominates and induces the propagation of a steep wetting front which is characteristic of a hyperbolic
equation. In the case of fully saturated conditions the governing flow equation simplifies to a linear
elliptic equation. The ‘multiple personalities’ of the Richards equation pose a special difficulty for a
computational algorithm, because it must be capable of accommodating all three types of partial
differential equations.

A mixed transform finite element method is developed and applied to a set of challenging flow
problems in variably saturated porous media. The capability of this new numerical method is
demonstrated through direct comparisons with solutions produced with the widely popular modified
Picard method.8

2. GOVERNING FLOW EQUATION

The partial differential equation (PDE) for flow in a variably saturated porous medium was originally
derived by Richards by combining the mass conservation equation with the Buckingham–Darcy flux
law. The Richards equation provides an average macroscopic description of fluid flow processes that
are essentially probabilistic in nature and occur at the microscopic level. In 1D the PDE is written as
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wherey�h� is the volumetric water content (cm3=cm3), K�h� is the hydraulic conductivity (cm s71), z
is the depth (cm) taken positive downwards andh is the pressure head in centimetres of water. This
PDE is commonly referred to as the mixed formulation of the Richards equation. Storage associated
with compressibility of the porous medium and fluid is neglected, although it can be easily and very
effectively incorporated into equation (1), e.g. using the approach of Paniconiet al.9

Two alternative forms of this PDE are the so-calledh- andy-based PDEs.1 The standardh-based
formulation, which is the more popular of the two, is expressed as
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with the moisture capacity term defined asC�h� � @y=@h. They-based formulation is
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with the moisture diffusivity defined asD�y� � K�y�=C�y�. The classicalh-based formulation has the
advantages of being applicable to both saturated and unsaturated conditions and of accommodating
heterogeneous soils. However, numerical approximations of this formulation generally exhibit very
poor preservation of global mass balance8,10 and relatively slow convergence. In contrast, the
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classicaly-based formulation is limited to strictly unsaturated conditions and homogeneous media
(i.e. y is discontinuous at the layer interfaces). When approximated, however, it produces very well-
behaved, mass-conservative and rapidly convergent solutions.11

Celiaet al.8 developed a semidiscrete ‘delta’ formulation of equation (1) which is referred to as the
modified Picard method. This method apparently combines the benefits of bothh- andy-based PDEs
without the inherent drawbacks of each formulation. Of particular importance is the mass-
conservative nature of this delta formulation. This formulation is expressed as
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n andn andk are the time plane and iteration indices
respectively.

Similarly, Hills et al.12 and Kirklandet al.13 harvested the advantages of both theh- andy-based
formulations by introducing a generalized variableF which is a linear transform of pressure head and
moisture content. They derive a modified form of the Richards equation, namely
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where F � F�z; t� � g�h�z; t�; z�; y � y�z; t� � f �h�z; t�; z�;F � �@f =@h�@h=@F and G � @g=@h. The
last term in (5) accounts for the ‘jump conditions’ in the soil properties at layer interfaces. Two very
significant advantages of this unique formulation are that the numerical algorithm does not require
iteration and is mass-conservative. However, because (5) requires thatF be uniquely defined, it can
only be solved using a finite volume analogue with cell-centred nodes, so that discontinuous changes
occur at the cell interface. Other disadvantages of this approach are associated with the calculation of
G andDF at the layer interfaces.13

It will be subsequently demonstrated that the modified PDE expressed in (5) is unnecessary and a
finite element analogue can indeed by used with node points located at the material interfaces. In
addition, the computational advantages of the new mixed transform method are illustrated through
comparisons against the modified Picard method.

3. MIXED TRANSFORM FORMULATION

Using a transform similar to that of Kirklandet al.,13 a mixed formulation of the Richards equation
can be developed in terms of the partitioned transformed variablew:
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a1 � 1=C�h0�; �9�

a2 � h0 ÿ a1y0: �10�
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The transition pressure headh0 is an arbitrary parameter, withy0 being the corresponding water
content value. It is easy to verify that forh5 h0, direct substitution of (7) and (8) into (6) yields theh-
based form. Similarly, forh < h0, equation (6) transforms to they-based form. From equation (7) it is
evident that the benefits of the partitioned transform can be maximized by choosing a transition
pressure value close to zero. This choice has the effect of making the transformed PDE behave
(numerically) much more like the classicaly-based formulation expressed in equation (3). Through
numerical experiments, Kirklandet al.13 empirically selected a value ofÿ15 cm. In this study,
however, it was found that anh0-value close to the air entry pressureha yielded the most consistent
results.

4. FINITE ELEMENT ALGORITHM

An iterative algorithm is formulated using the elegantly simple Galerkin finite element procedure,
which requires that the integral over the domain of the residuale and a set of weighting functionsoj

vanishes. Thus the Galerkin functional is
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where the residual is obtained directly from (6), namely
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In this expression the quantitiesy, w and K are approximated in terms of a set of linear basis
functions; these functions are chosen to be identical to the set of weighting functionsoj. Since the
residual is non-linear, it is useful to expande in terms of a Taylor series.14 Thus the Newton–Galerkin
functional is
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wherek is the iteration index. It is important to note that the Taylor series is expanded in terms ofh
rather thany or w, which are discontinuous. Choosingh as the solution variable has the advantage
cited previously for theh-based formulation. The nodal values of pressure headhj at the new time
planen� 1 and the new iteratek� 1 are computed using the Newton iteration formula
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Rearranging the quantities in (13) and expressing them in matrix notation produces
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where the right-hand-side vectorfRg and the Jacobian matrix [J] are
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Discretizing @y=@t and integrating by parts, the components of the Newton–Galerkin ‘weak
statement’ become
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wherek � K@h=@w and@k=@h � �@K=@h�@h=@w. In the latter approximation the termK@h2
=@w2 was

neglected because it was found to be small. The integration by parts in the previous equations
effectively reduced or ‘weakened’ the differentiation requirement15 on w. Inserting the expressions
for the linear basis functionso1 � 1 ÿ x=Le ando2 � x=Le, the individual terms of (17) and (18) can
be integrated exactly using15
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wherex is the local element co-ordinate, (a, b) are integers andLe is the element length. For a generic
finite element of lengthLe the elemental matrices are
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n�1;k ; �k and �K are the average values (e.g. arithmetic,
geometric or harmonic) for the element. If prescribed, the flux termsqbc

0 andqbc
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the top and bottom boundaries; in the interior of the domain they are of course self-cancelling. Mass
lumping has been used in (20) and (21) to stabilize the matrices associated with they-terms.

In implementing the new finite element algorithm, termination of the Newton iteration process is
based on a dual convergence criterion which tests the norms of relative change and residual vectors.
Specifically, the numerical solution must satisfy

max jDhj=hjj4erel and k r�k�1�
k
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wherek k

1

is the infinity norm andr�k�1� is the residual computed asJDh�k�1�
� R.

In general the maximum relative change is a good indicator of convergence; however, the residual
norm is more stringent and reliable. Typical ranges of values for the control tolerances in equation
(22) are10ÿ6 4erel 4 10ÿ3 and10ÿ8 4eres 4 10ÿ5.
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5. COMPUTATIONAL TEST PROBLEMS

A 1D computer code was written in FORTRAN 77 to implement the mixed transform finite element
algorithm. For the purpose of making comparisons, a second finite element computer code was
developed using the modified Picard method. The two codes were verified through intercomparisons
with the UNSAT1D code2 and BREATH code.3 Both codes developed for this study included options
for numerical solutions using uniform time steps, over specified time intervals, and fully automatic
time stepping. All computer runs were performed on an IBM PS=2 Model 95 (66 MHz).

Three challenging computational test problems, taken directly from the hydrology and soil physics
literature, were selected to demonstrate the capabilities of the mixed transform finite element
approach. The nature and level of computational difficulties associated with the selected test
problems were characterized in terms of the grid hydraulic Peclet numberPehg and hydraulic time
scale parameterthg. As in heat and mass transfer, the hydraulic Peclet number describes the relative
significance of convective to diffusive transport. A Peclet numberPehg > 2 means that the gravity
term in the Richards equation is becoming dominant and implies that a fine grid may be necessary to
capture a sharp pressure front. The grid hydraulic Peclet number16,17 is calculated from
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@
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whereDz is the element size. For gravity-driven flow the time scale parameter can be estimated using
a hydraulic Courant number (by analogy to its use in computational fluid dynamics)Cohg from the
relation
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For fully implicit algorithms such as that used here,Cohg can be chosen to be greater than unity. For
diffusion- or capillarity-dominated moisture transport the hydraulic time scale parameter can be
estimated using a relation similar to that for the time constant of heat conduction,18 namely

thg �
Dz2

K�h�=C�h�
: �25�

Zones close to fully saturated conditions generally exhibit smaller characteristic times and thus
control the time stepping for the entire domain. Typically, the maximum time step size should be
comparable with the minimumthg in order to capture the transient changes in pressure head occurring
across an element.

5.1. Test Problem 1—Flow into a desiccated soil column

The first computational problem is adapted from a flow simulation previously used by Celiaet al.8

to test numerical techniques for solving the Richards equation. This test problem involves modelling
a wetting front moving through a homogeneous, vertical soil column. This deceptively simple flow
problem is fairly challenging because of the imposed Dirichlet boundary conditions, strongly non-
linear soil hydraulic properties and relatively large pressure head gradients. The idealized soil column
is 60 cm in length and is assumed to consist of desert soil representative of the Las Cruces field site in

446 R.G. BACA, J. N. CHUNG AND D. J. MULLA



New Mexico. Flow in the soil column occurs as a result of the specified pressure head at the surface,
gravity and capillarity effects. The bottom boundary is held at the initial pressure headhi. The soil
hydraulic properties are described by the van Genuchten19 relations
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where yr and ys are the residual and saturated water contents respectively,Ks is the saturated
hydraulic conductivity anda, n and m are model parameters withm � 1 ÿ 1=n. Values for these
parameters areyr � 0�102; ys � 0�368;Ks � 9�22 � 10ÿ3 cm s71, a� 0�0335 cm71 andn� 2. The
air entry pressure for this case is computed fromha � ÿ1=a and the transition pressure from
h0 � ha ÿ 1.

To make the problem progressively more challenging, four cases were considered in which the top
boundary pressurehb was varied, namelyhb � ÿ75;ÿ25; 0 and 75 cm. The initial pressure head in
the soil column was uniform and set to a value ofhi � ÿ1000 cm. As in Reference 8, a uniform mesh
of two-node line elements was used to represent the vertical soil column withDz � 2�5 cm. The
mixed transform simulations were performed using automatic time stepping with ‘starting’ step sizes
of 0�14Dt4 20 s, depending on the case. Convergence of the iteration algorithm was defined by the
toleranceserel 4 10ÿ4 and eres 4 10ÿ6.

Comparisons of the pressure head profiles obtained with the mixed transform and modified Picard
methods are shown in Figure 1. For the coarse mesh used, the graphical comparisons of numerical
results show satisfactory agreement except in the location of the front. To resolve this difference, the
simulation with the mixed transform code was reported with a finer mesh (i.e.Dz � 1 cm) and
smaller time steps. The fine grid solution, also presented in Figure 1, shows closer agreement with the
original mixed transform solutions.

Iteration histories for the cases of ‘wet’ boundary condition (hb� 0 cm) and ‘dry’ boundary
condition (hb�ÿ75 cm) were generated for solutions obtained with uniform time steps within time
intervals. These iteration histories are compared in Figure 2. These histories clearly show that the
mixed transform method exhibits much faster convergence, particularly for the wet boundary
condition case. It is also clear that the modified Picard method, while quite robust and competitive for

Figure 1. Comparison of mixed transform and modified Picard solutions for Test Problem 1:hb�ÿ75,ÿ25, 0 and 75 cm; soil
column discretized using uniform grid,Dz � 2�5 cm
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dry initial conditions, exhibits a strong sensitivity to wet and ponded boundary conditions. This
numerical characteristic of the modified Picard method has not been highlighted in the existing
literature.8,20

The numerical characteristics suggested by the iteration histories are supported by the central
processing unit (CPU) times for the four cases. The CPU times, which are listed in Table I, show that
the mixed transform is generally faster than the modified Picard method. For the wet case the mixed
transform method was about 2�5–6�5 times faster than the modified Picard solution. In addition, it was
found that for the case with the ‘ponded’ boundary condition (hb� 75 cm) the modified Picard
solution required very small time steps and high iteration limits (i.e. 100 iterations) to produce a
convergent solution.

Insight into the numerical characteristics of this test problem can be gleaned from thePehg andthg

curves shown in Figure 3. For the two unsaturated boundary conditions thePehg curves show a front-
like shape with the maximum value occurring at the top boundary. The wet or saturated boundary
conditions case, however, exhibits a maximumPehg-value near the location of the wetting front. In
the case of the ponded boundary condition the curve is completely distinct and almost completely flat
with Pehg � 1. The sequence ofthg curves, however, shows more consistent trends. These hydraulic
response times are small in magnitude and relatively uniform behind the wetting front and then
rapidly transit to very large values. The smallthg-values behind the wetting front constrain the
magnitude of allowable time steps.

5.2. Test Problem 2—Flow into a dry layered soil

The second test problem, originally solved by Hillset al.,12 involves modelling infiltration into a
field-scale layered lysimeter. This test problem is an excellent one because it poses a strongly non-
linear flow problem that exhibits very large gradients in both pressure head and moisture content.
Five soil layers (each 20 cm) consisting of alternating Bernino loamy fine sand and Glendale clay

Figure 2. Iteration histories for mixed transform (full line) and modified Picard (broken line) solutions for bounding cases of
Test Problem 1

Table I. Comparison of CPU times for Test Problem 1

CPU time (s)

Method hb�ÿ75 hb�ÿ25 hb�0 hb�75

Mixed Transform 4 7 12 14
Modified Picard 11 16 35 92
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loam make up the 100 cm soil column. The soil hydraulic properties are described by the van
Genuchten19 formulae. For the Bernino loamy fine sand these parameters are
yr � 0�0286; ys � 0�3658;Ks � 541�0 cm day71, a� 0�0280 cm71 and n� 2�2390. For the Glen-
dale clay loam the soil hydraulic parameters areyr� 0�1060, ys� 0�4686, Ks� 13�1 cm day71,
a� 0�0104 cm71 andn� 1�3954. The air entry pressure for this case was computed fromha�ÿ1=a
and the transition pressure fromh0�max(ha)j71, wherej is the soil material index.

Figure 3. Hydraulic Peclet number (full line) and time scale (broken line) curves for Test problem 1: results for fine grid
solutions (Dz � 1 cm)

Figure 4. Moisture content profiles computed for Test Problem 2 using mixed tranform and modified Picard methods; soil
column discretized using uniform grid,Dz � 4 cm
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Figure 6. Hydraulic Peclet number (full line) and time scale (broken line) curves for Test Problem 2

Figure 5. Comparison of pressure head profiles computed for Test Problem 2; soil column discretized using unifornm grid,
Dz � 4 cm
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Two cases of increasing computational difficulty were simulated in which the initial pressure head
profile was set tohi � ÿ104 andÿ56104 cm. The upper boundary condition was a constant flux of
qbc

0 � 13�1 cm day71 at the soil surface, which is exactly equal to the hydraulic conductivity of the
clay loam layer. The bottom boundary was held at the initial pressure head. The flow domain was
discretized into a uniform mesh of finite elements withDz � 4 cm. A time domain of 105 s was
simulated using automatic time stepping steps of 5�0 and 0�2 s for the dry and drier initial conditions
respectively. The convergence tolerances were set toerel 4 10ÿ4 anderes 4 10ÿ6.

The moisture content profiles computed at the end of the simulation period are shown in Figure 4;
because the moisture content is discontinuous at material interfaces, the nodal values at these
interfaces were calculated using the hydraulic properties of the lower soil. In this figure the numerical
results obtained for both initial conditions are compared. The results produced by the mixed
transform finite element method agree exceptionally well with those computed with the modified
Picard method. As illustrated in Figure 5, the two computed pressure head profiles overlay nearly
perfectly.

Although both cases exhibit very large pressure gradients, quite interestingly, neither case was
especially taxing for either the mixed transform or the modified Picard method. The CPU times for
the first case�hi � ÿ104 cm) were 13 s for the mixed transform solution and 20 s for the modified
Picard solution, indicating that the mixed transform is almost twice as fast. For the second case
�hi � ÿ5 � 104 cm) the mixed transform method required 17 s and the modified Picard method
required 22 s. This comparison of CPU times clearly shows that both methods exist low sensitivity to
very dry initial conditions.

ThePehg andthg curves for the two cases are quite similar to each other, as illustrated in Figure 6.
It is noted that the Peclet number and time scale parameter values for this test problem are more
constraining at the end of the simulation than at the beginning. The curves are illustrated in Figure 6;
they suggest that the first two layers are largely capillary-dominated and exhibit the smaller hydraulic
response times.

5.3. Test Problem 3—Variably saturated flow into a layered soil

The final test problem is taken from Reference 21 and involves flow into a layered soil column. A
high-flux boundary condition, relative to the soil hydraulic conductivity, creates locally saturated and
unsaturated regions. The physical setting consists of a thin surface crust (0�5 cm), a tilled layer
(10 cm) and an undisturbed subsoil layer (15 cm). At the surface the water application rate is
qbc

0 � 10 cm h71, while the bottom boundary is held at a fixed pressure head value equal to the initial
value. The soil hydraulic properties for each layer are described by the Brooks–Corey formulae21

y�h� �
ys; h5 ha;

ys�h=ha�
ÿ1=b

; h < ha;

�
�28�

K�h� �
Ks; h5 ha;

Ks�h=ha�
ÿn
; h < ha;

�
�29�

where ha is the air entry value of the pressure head andb and n are fitting parameters with
n � 2 � 3=b. The parameter values for (i) the surface crust areys� 0�562, Ks � 0�0616 cm h71,
ha�ÿ4�55 cm andb� 6�8, (ii) the tilled layer areys� 0�562, Ks� 1�396 cm h71, ha�ÿ4�55 cm
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andb� 13�3 and (iii) the undisturbed subsoilys� 0�440,Ks� 0�312 cm h71, ha�ÿ9�50 andb� 13�3.
Because of the discontinuous nature of the Brooks–Corey conductivity function, a transition pressure
for each soil layer was computed fromh0 � ha ÿ e, wheree was an arbitrary small number (e.g. 1073).

The vertical soil column was represented by a variably spaced finite element mesh consisting of
Dz � 0�25 cm in the surface crust,Dz � 0�5 cm in the tilled layer andDz � 0�5–1�0 cm in the
undisturbed subsoil layer. The initial pressure head was uniform and set tohi � 7 35,100 cm. The
simulation period of 7 h was simulated using automatic time stepping with a starting step ofDt � 5 s.
Convergence of the mixed transform iteration algorithm was defined by the toleranceserel 4 10ÿ5

and eres 4 10ÿ6.
The computed moisture content profiles fort� 7�0 h are illustrated in Figure 7; the nodal values at

these material interfaces were calculated using the hydraulic properties of the lower soil. In this figure
the numerical solutions produced by the mixed transform finite element method are compared with
those calculated with the modified Picard finite element code. The differences between the two
moisture profiles are very small. The calculated pressure heat profiles, which are presented in Figure
8, also show excellent agreement. The iteration histories, which are presented in Figure 9, provide
insight into the computational efficiency of the two solution techniques. From this plot it can be noted
that the modified Picard method exhibits a much greater sensitivity to the time step size for this case.
In fact, for the large time step size the Picard iteration process shows a large increase in iterations.

Figure 7. Comparison of moisture content profiles computed for Test Problem 3 using mixed transform and modified Picard
methods
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This behaviour is consistent with the iteration history observed in the first test problem. The
comparison of CPU times showed that the mixed transform solution was faster than the modified
Picard solution by a factor of 1�6.

The Pehg and thg curves calculated for this test problem, shown in Figure 10, indicate that this
problem was primarily dominated by capillary flow�Pehg < 1� and the hydraulic response times in
the second layer are relatively large considering that it is almost completely saturated. These
numerical characteristics explain to some degree the observation of Ross and Bristow21 that accurate
solutions for this test problem can be obtained with a coarse grid and large time steps.

Figure 8. Comparison of pressure head profiles computed for Test Problem 3 using mixed transform and modified Picard
methods

Figure 9. Iteration histories computed for Test Problem 3 using mixed transform and modified Picard methods
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6. CONCLUSIONS

A mixed transform finite element method was developed for solving the non-linear Richards equation
for variably saturated flow. In this new approach the mixed formulation of the flow equation is
transformed using a partitioned change of variable. An iterative scheme is embedded in the finite
element algorithm for the transformed equation. This technique is formulated using a Newton–
Galerkin weak statement. The capabilities of this new method are demonstrated with applications to a
set of challenging 1D computational test problems. The hydraulic Peclet numberPehg and the
characteristic time scalethg were introduced to provide insight into the nature and level of
computational difficulty of the test problems.

For the broad range of regimes considered in the test cases, the mixed transform method exhibits a
higher degree of robustness than the modified Picard method. In certain cases the mixed transform
method can converge faster and more accurately capture steep pressure head and moisture content
profiles which are typically encountered in desiccated soils. The new method is easy to implement in
existing one- and multi-dimensional finite element codes, as well as finite volume codes. The new
method offers improved computational efficiency, accuracy and robustness for a broad range of
variably saturated flow problems.
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